

 ARL-CR-0779 ● SEP 2015

 US Army Research Laboratory

High-Bandwidth Tactical-Network Data
Analysis in a High-Performance-Computing
(HPC) Environment: Packet-Level Analysis

prepared by Brian Panneton
Technical and Project Engineering, LLC
Alexandria, VA

James Adametz
QED Systems, LLC
Aberdeen, MD

under contract W91CRB-11-D-0007

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-CR-0779 ● SEP 2015

 US Army Research Laboratory

High-Bandwidth Tactical-Network Data
Analysis in a High-Performance-Computing
(HPC) Environment: Packet-Level Analysis

prepared by Brian Panneton
Technical and Project Engineering, LLC
Alexandria, VA

James Adametz
QED Systems, LLC
Aberdeen, MD

under contract W91CRB-11-D-0007

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

September 2015
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

July 2012–December 2014
4. TITLE AND SUBTITLE

High-Bandwidth Tactical-Network Data Analysis in a High-Performance-
Computing (HPC) Environment: Packet-Level Analysis

5a. CONTRACT NUMBER

W91CRB-11-D-0007
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Brian Panneton and James Adametz
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Technical and Project Engineering, LLC QED Systems, LLC
Alexandria, VA Aberdeen, MD

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
ATTN: RDRL-CIH-C
Aberdeen Proving Ground, MD 21005

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

ARL-CR-0779

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report describes how the collaboration of Army Test and Evaluation Command’s Aberdeen Test Center and the US Army
Research Laboratory enabled a system to be built that leverages the capabilities of the high-performance-computing systems
to produce a data model used to analyze tactical radio network performance at the packet level.

15. SUBJECT TERMS

tactical networks, data reduction, high-performance computing, data analysis, big data

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

28

19a. NAME OF RESPONSIBLE PERSON

Kenneth Renard
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

410-278-4678
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures v

List of Tables v

1. Introduction 1

2. Motivation and Desired Outputs 1

3. Data Organization 2

4. Prepare File 2

5. CommsIp Process 3

6. Collection Point 3

7. Direction 4

8. Detecting Local Traffic 4

9. Hash 5

10. Fragments 5

11. CommsIp Crunch 6

12. Offloaded Worker 7

13. Packet Matching 7

14. Unicast 7

15. Multicast 11

16. Offloaded Worker (Continuation) 11

iv

17. Analyst Usage 12

18. Conclusion 12

19. References and Notes 14

Appendix. Tabular Data Definitions 15

List of Symbols, Abbreviations, and Acronyms 19

Distribution List 20

v

List of Figures

Fig. 1 IP header hashed fields ..5

Fig. 2 Unicast packet matching process ...8

Fig. 3 Creating matched packet entries ..9

Fig. 4 Handling unmatched packets ...11

Fig. 5 Sample CommsIp-derived data product (KML file)12

List of Tables

Table A-1 CommsIp data elements ...16

Table A-2 CommsIp additional transport elements ..17

Table A-3 Packet knowledge temporary store structure17

Table A-4 Packet-Knowledge-Temporary-Store (PKTS) added transport level
fields ...18

vi

INTENTIONALY LEFT BLANK.

1

1. Introduction

Tactical radios are held to more stringent requirements than radios found in the
commercial field. They must adhere to a higher set of requirements, which allow
them to better operate in hostile environments. The Brigade Modernization
Command, in conjunction with the Army Test and Evaluation Command’s
Operational Test Command, conducted large-scale test events such as the Network
Integration Evaluation1 to test radios in relevant tactical environments. Radio
networks under test are instrumented to record traffic transmitted between network
nodes. These data are processed and analyzed to determine how well a single radio
or the whole network performed in the test.

The collaboration between the Aberdeen Test Center and the US Army Research
Laboratory’s Computational and Information Sciences Directorate resulted in a
data processing system that reduces the collected traffic into manageable data
products. Analysts extract relevant metrics from these data products to support the
evaluation of the system-under-test performance.

One of these data products, CommsIp, is related to packet-level analysis and is
critical to network evaluation. This data product includes statistics such as the
latency and completion rates between network nodes; both are derived by
correlating the data (packets) observed at each node during the test. Correlating
over 1 billion packets recorded during each day of testing was a forcing factor to
employ high-performance-computing (HPC) assets to process the massive volumes
of data into a usable data model.2 This report explains the need of this data model
as well as the cut module3 within the HPC framework4 that creates it.

2. Motivation and Desired Outputs

Most systems send data across a network encapsulated in an IP packet. The IP layer
data may arrive successfully, arrive out of order, or be dropped during transit. The
results of these 3 cases are needed to determine several aspects of network
performance.

IP is known as a “best effort” delivery protocol, and knowing how well the network
delivers IP layer data provides insights into how well the network performs from
the end user perspective. By performing IP layer packet analysis, one can determine
key network performance metrics, such as data delivery latency, load handling, and
overall delivery completion rates. This analysis becomes even more important
when the network is in the tactical domain because of the need for reliable and
secure networking.

2

To evaluate network performance, the CommsIp data model is generated from raw
collected data. The model captures the history of each packet and includes details
from each end point that it was observed at.

During the process of creating the CommsIp data model, it is possible to perform
calculations that analysts commonly want to see in a distributed parallel fashion
that can significantly reduce the time it takes to achieve the same result in a serially
processed, database-driven analysis. This includes packet matching, latency
calculation, packet endpoint determination, and the filtering out of local network
traffic, which is of no interest from an analysis perspective.

The Test and Evaluation community has determined most of the definitions and
layout of the data product, which can be seen in Table A-1 (see the Appendix).
Extra columns (refer to Table A-2) have been added to reduce unneeded data
reduction for other cut modules, such as Transport, which draws Transmission
Control Protocol (TCP)-based statistics. Each row in the CommsIp table typically
represents the combination of 2 observations of a packet, the sending side and the
receiving side. In some cases only one side of the transmission will be observed
and the row will reflect that by leaving fields empty that cannot be calculated
without both observations. An example would be calculating latency where you
must have both sides.

3. Data Organization

This section describes in detail what reductions and manipulations occur within the
CommsIp cut module. The module takes 2 different types of input data cuts. The
cuts come from Binary Large Object (BLOb) files and/or Packet Capture (PCAP)
files. During the module’s Process stage, important information is pulled from
packets and saved in a temporary data store. This information is then read in during
the module’s Crunch stage, where packet matching calculations on the data occur.
This simplified data are then turned into the CommsIp Data Product.

4. Prepare File

File metadata must be collected to properly organize the information found in data
cuts. The device ID, file ID, and, in the case of a PCAP file, the recording source
are all required for correlating packet data across nodes in a network.

The device ID is an identifier used in mapping an Advanced Distributed Modular
Acquisition System (ADMAS) to its recorded data. The file metadata provides a
serial number that is used to look up the device ID in a predefined reference.

3

The file ID is a global identifier that represents the file. Each HPC processing core
is able to perform a lookup on a file ID and uniquely access the same file.

5. CommsIp Process

As the file parser begins iterating cuts, they are passed into CommsIp’s Process
method. Though BLOb Nettap cuts5 and PCAP cuts are roughly the same, BLOb
cuts contain more cut metadata. The metadata for each Nettap cut contains the
network source data stream it was recorded from, in comparison with the PCAP
whose data are from only one network source. BLOb Nettap cut metadata also
contains information about whether or not the data collection device experienced
an overflow error (resulting in unrecorded data), what type of overflow error it was,
and which interface it was recorded on. If an overflow error occurs, the data in the
cut may be corrupted, and for this reason, the cut is ignored.

When the CommsIp cut module receives a cut, it decodes the cut’s payload to
extract the full Ethernet packet contained within and checks to verify that the packet
should be processed. One check compares the packet’s collection time to the
evaluation time window specified in the user-set configuration file. Another check
ensures the packet was collected from a known source and on a tap being
considered in the data reduction. Only packets that pass all checks are considered
for the remainder of the reduction process.

From here, each verified Ethernet packet has its EtherType6 decoded. All packets
with EtherTypes that are not IPV4 get dropped because of prior knowledge that the
evaluations will only be performed on IPV4 data. Tunneled packets are then broken
down into their inner and outer IP layers by decoding any tunnel protocols, such as
the Generic Routing Encapsulation protocol that may be encapsulating the packet.

Packets with the outer IP layer’s time to live (TTL) less than 2 get dropped because
of the location on the network of where the ADMAS records traffic. The packet’s
TTL will typically drop by 2 or more when traveling over the air. Thus, this data
may get recorded by the ADMAS but will get dropped before reaching the
destination device.

6. Collection Point

The collection point is the location where the ADMAS is observing traffic on the
network. There can be many collection points on one node; each is given a letter
designation. For example, the collection point “X” is located on the switch port
analyzer (SPAN) port of the router facing the over-the-air (OTA) radio. Thus, any
traffic coming in or out of the OTA radio will end up being copied to the ADMAS.

4

The location of the collection point is vital to the analysis. For instance, if one side
of the network collects data behind an encrypter and the other side collector is
before the encrypter, there is absolutely no way to match the packets.

7. Direction

The location of the collection point is an important part of creating heuristics to
determine the direction of packet transmission. Each collection point may use a
different heuristic, and the heuristic may change from event to event. Some of the
simple cases rely on prior knowledge of the testing setup to determine the direction.
More complicated cases involve an extra processing phase to gather more
information to make the determination.

For example, collection point “B” as used in most of the Warfighter Information
Network–Tactical test events was a simple heuristic using a simple check on the
media access control (MAC) addresses in a packet’s Ethernet header to determine
if the packet is inbound or outbound. The collection point “B” heuristic states that
if the packet’s source MAC address is an inline network encrypter MAC address,
it is considered inbound. Alternately, if the destination MAC address is either
multicast or the network encrypter, then it is outbound.

Some of the heuristics will use Virtual Local Area Network identifiers and MAC
addresses to determine direction. There are many other heuristics that change from
event to event, but they will not be covered in this report.

8. Detecting Local Traffic

Local packets are those that transit from one device to another on the same network
node. An example of local network traffic would be a vehicular router pinging a
collocated radio device to see if it responds.

A packet can be either transmitting between nodes or transmitting entirely within a
single node. Since the CommsIp Data Model strictly contains packets that transmit
between nodes, local traffic must be filtered out. Packets that have a source and
destination on the same node or a packet direction that cannot be determined are
assumed local and removed from processing. This check is sometimes used to
determine the packet direction; however, it is generally used during the Crunch
stage of the reduction.

5

9. Hash

To conduct efficient packet matching and calculate the latency, there needs to be a
common key between packets recorded on different devices. To generate this
common key, a packet’s mutable fields are removed since they can change between
the sending side and the receiving side. Next, a hashing algorithm is applied to the
modified packet resulting in a common key. Mutable fields include the IP options,
the TTL, the packet checksum, and the type of service. In addition, the outer IP
layer (if a tier-2 tunneling protocol is used) may be completely different because of
how the packet gets routed through the network, hopping between tunnel endpoints.
By omitting these mutable fields from the packet and only hashing on the inner IP
layer, we find that the sending side hash matches the receiving side hash.

Figure 1 depicts in red the fields that are not included in the hash because these
fields are mutable. Each hash is associated with the data for its packet stored in the
Packet-Knowledge-Temporary-Store (PKTS) local to the CommsIp Worker
process. The PKTS is a temporary storehouse for all reduced packet data. PKTS
records are incrementally populated during the various phases of the reduction
processing. Each process records data into a separate store. The data columns of the
store are shown in Tables A-3 and A-4 in the Appendix.

Fig. 1 IP header hashed fields

10. Fragments

Before the PKTS data are recorded, all IP packet fragments are reconstructed.7 This
is done because fragmentation can occur anywhere along the network path and thus
may change how the packet appears on the receiving side, making it difficult to
match individual fragments using the hash-based method. In general, fragments

6

appear in order and relatively close to each other in the file. A fragment
bookkeeping mechanism is used to collect the fragments.

As the bookkeeper collects packet fragments from a file, it attempts to reconstruct
the whole packets they originated from. Fragments from a file that do not fully
recreate a packet are provided to the Receiver8 process to be matched to fragments
from other files. Packets that are reconstructed are decoded and have their
information added to the PKTS.

11. CommsIp Crunch

Once the Process stage is complete and all fragmented packets have been decoded,
the Crunch stage begins. At the start of the CommsIp Crunch stage, the Receiver
process begins to offload work to CommsIp workers. Dividing up the work across
the processes is crucial to efficient processing of the data. The initial breakdown of
the work is based on bins that each packet is placed into. The bins are numerically
defined based on the number of processes (P) in the HPC job, where N is
determined by Eq. 1,

 N = ceiling(log2(P)) , (1)

and the bins are defined to include the range 0 ⟶ 2N – 1. As an example, if we had
250 HPC processes for a reduction job, then N = ceiling(log2(250)) = 8, and the
bins would be 0 ⟶ 255.

Based on values calculated in the CommsIp Process stage, bin keys are sent to each
CommsIp worker. Bin keys are unique bit strings that map to the tailing N bits in
packet hashes. The keys identify which set of packets each worker should operate
on.

Considerations must be observed for memory for these packet operations since
some of the HPC machines do not have swap space.9 When too much runtime
memory is consumed, the node will end the reduction job prematurely. To prevent
this, the number of packets per hash—thus, the number of packets that can be
processed by each worker at a time—is limited based on the available memory. For
current systems, the upper limit is set to 200,000 packets.10 Though this limit may
seem low, it allows larger hash bins to be split up and processed in parallel sub-
bins.

During the Process stage, CommsIp records a count of packets per bin (PPB), which
allows it to determine when the limit is exceeded by any bin. When the upper limit
is exceeded, crunch creates a number of sub-bins (S) according to Eq. 2:

7

 𝑆𝑆 = 2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐𝑙𝑙𝑐𝑐2�
𝑃𝑃𝑃𝑃𝑃𝑃

200,000�) . (2)

This will normally produce an evenly distributed amount of sub-bins, each being
smaller than the upper bound. The CommsIp Crunch process will offload each of
these to a worker and then wait until all the processing is done.

12. Offloaded Worker

An offloaded worker is one that receives a bin key, the number of sub-bin bits used,
and a sub-bin value. These workers collect all packet data from the combined set
of all PKTS that matches the bin key and the sub-bin value.

13. Packet Matching

Once all of the hashes have been found, the offloaded worker must attempt to find
sent and received packet matches. To simplify this, while pulling the sub-bin into
memory, each packet’s data are placed in an indexed table with the packet hash as
the key. Each index (hash) can have one or more packet records, so iterating
through the table provides a collection of packets with the same hash identifier.

Indexes with only one packet represent an unmatched packet. For these, the
packet’s direction flag (pkt_isoutbound in PKTS), which shows the packet’s
direction, is examined to determine if this is a received but not sent (RNS cip_rns
= true) or not completed (cip_comp = false) packet.

When more than one packet has the same hash value, then the set of packets is split
into two lists (SENT and RECEIVED) based on each packet’s direction flag. These
lists are then fed into 1 of 2 packet-matching processing algorithms: unicast or
multicast.

14. Unicast

The unicast algorithm is outlined in Fig. 2. Unicast matching begins with the 2
packet lists: one for sent packets and one for received packets.

8

Fig. 2 Unicast packet matching process

The red loop depicts what happens if there are no received packets. Each sent packet
is made into a one-sided pair. The pair is then appended to a list of matched entries.

If instead there are received packets, the list of receive-side packets is sorted in
ascending order by collection time. Initially, all packets in this list are considered
to be “unmatchable”. Then, as the algorithm finds potential matches of sent and
received packets, the received packets are removed from the “unmatchable” set.
Figure 3 depicts how matches are created from these 3 lists.

9

Fig. 3 Creating matched packet entries

For each of the sent packets in the list, a binary search is used to find the received
packet that was collected the soonest after and the one that was collected the latest
before the sent packet. Any packets found are considered potential matches and are
removed from the “unmatchable” set.

The results of the binary search can produce 3 different scenarios as depicted by
the first diamond shape in Fig. 3.

10

1) There are no matchable receivers to the left (earlier in time) side of the
binary search result.

2) There are no matchable receivers to the right (later in time) side of the
binary search result.

3) There are results on both sides.

In case 1, the algorithm first checks if the right side had a result. If so, a matching
pair is made from the sent packet and the right result. If not, the sent packet must
be tested to determine if it is local traffic. If the sent packet is considered local, then
it is ignored, and the next sent packet is processed. Otherwise, a receiver-less pair
(cip_comp = false) is created and appended to the list of matched entries.

In case 2, there is a left result but no right result. A pair is made using the sent
packet and the left result. The match is added to the list of matched entries.

In case 3, there is a result on the left side and a result on the right side. The algorithm
decides which side has the absolute minimum time difference and generates a
matched pair with the sent packet and the closer received packet.

Once the algorithm has attempted to match all of the sent packets, there may be
some received packets that remain in the “unmatchable” set. The remaining set of
unmatchable received packets is converted into receive-side-only pairs, as shown
in the tan loop in Fig. 4. The resulting received but not sent (cip_rns = true) entries
are added to the list of matched entries.

11

Fig. 4 Handling unmatched packets

15. Multicast

Dealing with a packet hash set that is multicast is similar to unicast, but the
algorithm must be taken into account—one sent packet can have multiple receivers.
In the unicast case, a packet could only be matched once. In the multicast case,
however, it may be matched once for each device observing a received copy. The
matching algorithm is modified such that the input list of date-ordered received
packets is grouped per device. Then the list of sent packets is traversed in the same
manner as in the unicast algorithm but for each device found in the receive list. In
addition, the set of unmatchable receives is split up by the device. Aside from this
difference, the algorithm works in the same way.

16. Offloaded Worker (Continuation)

Once all of the matches have been found, they are filtered for duplicate
observations. Duplicate observations are defined as observations that occur within
.000245 s11 of a bitwise identical packet on the same device. After the duplicate
observations are removed, the matched packets are then merged into the previously
described CommsIp table format. The latency calculation is performed during the
merge of the 2 packets. In addition, specific flags will also get set, such as
cip_ismulticast and cip_isduplicatepkt. The merged data are then written to disk.

12

17. Analyst Usage

The packet-level data contained on the CommsIp table is used by the analytical
community to render many different types of data products. These include
aggregate statistics binned by time and/or location within the network. The types
of tactical applications or network devices can be derived using the IP addresses
contained in each CommsIp record. One sample data product derived from the data
model is shown in Fig. 5, a Google Earth12 Keyhole Markup Language (KML) file.
This product includes aggregate network statistics between node pairs. The white
lines represent the range between nodes and are used to render the terrain profile
between nodes (seen at the bottom of the image). The blue arcs represent satellite
communication links between node pairs; green arcs represent terrestrial radio
links. The CommsIp-derived data for each link can be displayed by clicking on the
links (white box pop-up in upper left of the map area).

Fig. 5 Sample CommsIp-derived data product (KML file)

18. Conclusion

The packet-level analysis data processing module, CommsIp, has been used for
multiple testing events. As the tests evolved, the module has evolved as well to
cover new cases and new collection points.

The CommsIp processing represents the bulk of the computational work required
to perform packet-level network analysis and requires significant amounts of
processing time to complete. However, with the parallel nature of the data reduction
framework and HPC machines, the impact on time is mitigated to a reasonable

13

level. The shortening of the reduction time line allows the analysts to receive this
useful data product much faster. Since most of the analysis comes from the
CommsIp data product, having it in hand early can allow them to determine the
results of the test much faster.

14

19. References and Notes

1. OT&E Director. DOT&E FY2013 annual report; 2014 Jan 27 [accessed 2015
Aug 11]. http://www.dote.osd.mil/pub/reports/FY2013/pdf/army/2013nie.pdf.

2. Army Aberdeen Test Center (US). C4 data model description document
1.8.13. Aberdeen Proving Ground (MD): Army Aberdeen Test Center (US);
2014.

3. A cut as used herein is a record of raw recorded data that comes in many types.
Of primary concern to this report is the nettap cut type, which contains
recorded Ethernet data. A cut module is a reduction application component that
consumes cuts and renders them into data model records.

4. Panneton B, Adametz J. High-bandwidth tactical-network analysis in a high-
performance-computing (HPC) environment: HPC data reduction framework.
Aberdeen Proving Ground (MD): Army Research Laboratory (US); 2015 Sep.
Report No. ARL-CR-0777.

5. Army Aberdeen Test Center (US). VISION BLOb description. Aberdeen
Proving Ground (MD): Army Aberdeen Test Center (US); 2014.

6. IEEE Std. 802.3. IEEE standard for Ethernet. Piscataway (NJ): Institute of
Electrical and Electronics Engineers. 2012 Dec 28 [accessed 2014 Aug 2].
http://standards.ieee.org/findstds/standard/802.3-2012.html.

7. Kozierok CM. IP message fragmentation process. 2015 Jan 8 [accessed 2015
Jan]. http://www.tcpipguide.com/free/t_IPMessageFragmentationProcess.htm.

8. Panneton’s report High-Bandwidth Tactical-Network Analysis in a High-
Performance-Computing (HPC) Environment: HPC Data Reduction
Framework (see Ref. 3 listed above) contains definitions of the Worker and
Receiver processes within the HPC framework.

9. Swap space is a mechanism employed to use more memory than a computer
actually has in its RAM storage.

10. 200,000 packets as the upper limit of bin size was empirically determined to
be a good value.

11. This number was empirically determined to work well for duplicate
observations captured from the CISCO SPAN port. A large number of these
duplicate observations was collected and analyzed in early testing to determine
what this value should be set to.

12. Google. Google Earth [accessed 2015 July 22].
https://www.google.com/earth/.

15

Appendix. Tabular Data Definitions

16

Table A-1 CommsIp data elements

Column Name Description
cip_xdate Datetime on transmitting side of when packet was observed
cip_rdate Datatime on receiving side of when packet was observed
cip_xcollpt Data collection point on transmitting side
cip_rcollpt Data collection point on receiving side
cip_comp Boolean: True if the packet was observed on the receiving side, False

otherwise
cip_rns Boolean: True if the packet was observed on the receiving side but not

the sending side, False otherwise
cip_totalpacketsize Total size of the packet in bytes
cip_payloadsize Size of the packets inner most payload
cip_latency Latency between transmission and receipt of packet
cip_xdscp Differentiated services code point on transmitting side
cip_rdscp Differentiated services code point on receiving side
cip_xdeid Device ID on transmitting side
cip_xip IP Address on transmitting side
cip_rdeid Device ID on receiving side
cip_rip IP Address on receiving side
cip_protocol The protocol the packet was sent on
cip_payloadhash The folded md5sum hash of the inner most payload (backwards

compatibility)
cip_ipidentifier The IP identifier on the packet that was sent
cip_fragmented Boolean: True if the packet was fragmented, False otherwise
cip_xttl The time-to-live value on the transmitting side of the packet
cip_rttl The time-to-live value on the receiving side of the packet
cip_xsrcmac The source MAC address on the transmitting side
cip_rsrcmac The source MAC address on the receiving side
cip_xdstmac The destination MAC address on the transmitting side
cip_rdstmac The destination MAC address on the receiving side
cip_t_xip The outer most tunnel IP address of the transmitter
cip_t_rip The outer most tunnel IP address of the receiver
cip_innerfingerprintid The identifying full md5sum hash of the altered inner most IP layer,

used for matching
cip_inferred_x_deid Intended device the packet was sent from
cip_inferred_r_deid Intended device the packet was destined for
cip_daglimiteduseid Used for marking out data that should not be used by analysts
cip_dagreasoncodeid Used for marking out data that should not be used by analysts
cip_ismulticast Boolean: True if the packet is a multicast packet, False otherwise
cip_isduplicatepkt Boolean: True if the packet was observed at more than 2 locations,

False otherwise
cip_xvlanid Virtual Local Area Network ID of the sending side packet
cip_rvlanid Virtual Local Area Network ID of the receiving side packet
cip_istunneled Boolean: True if the packet is tunneled, False otherwise
cip_t_ipid The tunnel layers IP identifier of the packet
cip_t_payloadsize The tunnel layers payload size (contains the inner IP layer)
cip_t_payloadhash The tunnel layers md5sum payload hash

17

Table A-2 CommsIp additional transport elements

Column Name Description
txp_id 13-byte transport identifier string
txp_hash Hash of “normalized” transport identifier
txp_xport TCP/UDP port of packet transmitter
txp_rport TCP/UDP port of packet receiver
txp_istcp Boolean: True if packet is TCP, false otherwise
tcp_tcp_seq The sequence number from the TCP header (undefined if not TCP)
txp_tcp_ack The acknowledgement number from the TCP header (undefined if not TCP)
txp_datalen The total size of the TCP/UDP payload
txp_tcp_flags The TCP flags field (undefined if not TCP)
pay_fileid The internal file ID of the file containing the payload
pay_offset The file offset location of the payload in the file
pay_length The length of the payload in bytes

Table A-3 Packet knowledge temporary store structure

Column Name Description
binkey The first n bits of the pkt_fingerprint used to bin the data
nexteight The next 8 bits of the pkt_fingerprint used to sub-bin
pkt_date The datetime of when the packet was observed
pkt_collpt Data collection point of the observed packet
pkt_isoutbound Boolean: True if the packet is outbound, False otherwise
pkt_totalpacketsize Total size of the packet in bytes
pkt_payloadsize Size of the packets inner most payload
pkt_dscp Differentiated services code point of packet
pkt_device Device ID of the observing ADMAS
pkt_xip IP Address of the transmitter
pkt_rip IP Address of the receiver
pkt_protocol The protocol the packet was sent on
pkt_payloadhash The folded md5sum hash of the inner most payload (backwards

compatibility)
pkt_ipid IP identifier of the packet
pkt_isfragmented Boolean: True if packet was fragmented, False otherwise
pkt_packetcount The number of fragmented packets that the original packet is

comprised of
pkt_srcmac The source MAC address of the packet
pkt_dstmac The destination MAC address of the packet
pkt_fingerprint The identifying full md5sum hash of the altered inner most IP layer,

used for matching
pkt_ttl The time-to-live value of the packet
pkt_vlanid The virtual local area network ID of the packet
pkt_istunneled Boolean: True if the packet is tunneled, False otherwise
pkt_t_ipid The IP Identifier of the outer most tunnel layer
pkt_t_xip The sending IP Address of the outer most tunnel layer
pkt_t_rip The receiving IP Address of the outer most tunnel layer
pkt_t_payloadsize The size of the outermost tunnel layers payload (includes the inner IP

layer)
pkt_t_payloadhash The folded md5sum hash of the outer most tunnel payload (backwards

compatibility)
pkt_t_fingerprint The identifying full md5sum hash of the altered outer most IP layer,

used for matching
pkt_inferred_x_deid Intended device the packet was sent from
pkt_inferred_r_deid Intended device the packet was destined for

18

Table A-4 Packet-Knowledge-Temporary-Store (PKTS) added transport level fields

Column Name Description
txp_id 13-byte transport identifier string
txp_hash Hash of “normalized” transport identifier
txp_xport TCP/UDP port of packet transmitter
txp_rport TCP/UDP port of packet receiver
txp_istcp Boolean: True if packet is TCP, false otherwise
tcp_tcp_seq The sequence number from the TCP header (undefined if not TCP)
txp_tcp_ack The acknowledgment number from the TCP header (undefined if not

TCP)
txp_datalen The total size of the TCP/UDP payload
txp_tcp_flags The TCP flags field (undefined if not TCP)
pay_fileid The internal file ID of the file containing the payload
pay_offset The file offset location of the payload in the file
pay_length The length of the payload in bytes

19

List of Symbols, Abbreviations, and Acronyms

ADMAS Advanced Distributed Modular Acquisition System

BLOb binary large object

FPGA field-programmable gate array

HPC high-performance computing

IP Internet Protocol

KML Keyhole Markup Language

MAC media access control

OTA over-the-air [radio]

PCAP Packet Capture

PKTS Packet-Knowledge-Temporary-Store

TTL time to live

20

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIRECTOR
 (PDF) US ARMY RESEARCH LAB
 RDRL CIO LL
 IMAL HRA MAIL & RECORDS
 MGMT

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

1 TECH AND PROJ ENGR LLC
 (PDF) B PANNETON

1 QED SYSTEMS LLC
 (PDF) J ADAMETZ

 1 DIR USARL
 (PDF) RDRL CIN S
 K RENARD

	List of Figures
	List of Tables
	1. Introduction
	2. Motivation and Desired Outputs
	3. Data Organization
	4. Prepare File
	5. CommsIp Process
	6. Collection Point
	7. Direction
	8. Detecting Local Traffic
	9. Hash
	10. Fragments
	11. CommsIp Crunch
	12. Offloaded Worker
	13. Packet Matching
	14. Unicast
	15. Multicast
	16. Offloaded Worker (Continuation)
	17. Analyst Usage
	18. Conclusion
	19. References and Notes
	Appendix. Tabular Data Definitions
	List of Symbols, Abbreviations, and Acronyms

